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I. INTRODUCTION 

 

The generalized inverted exponential distribution is popular for modeling lifetime data in engineering, reliability, 

biomedical sciences and life testing [1]–[3]. Some software reliability models, can be found in [4]–[15]. A new class of 

Gompertz–type software reliability models and some deterministic reliability growth curves for software error 

detection, also approximation and modeling aspects, can be found in [17]–[19]. In this note we study the Hausdorff 

approximation of the Heaviside step function   by sigmoidal curve model based on the generalized inverted exponential 

software reliability model and find an expression for the error of the best approximation. 

 

II. THE GENERALIZED INVERTED EXPONENTIAL SOFTWARE RELIABILITY MODEL 

 

We consider the generalized inverted exponential cumulative distribution function – (GIECDF):  
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and the sigmoid (1) satisfies the relation  

 
0( ; , ) =1 .M t d d    (3) 

The following theorem gives upper and lower bounds for d  
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For the one–sided Hausdorff distance d  between 
0

th  and the curve (1) the following inequalities hold for  
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 Proof. Let us examine the functions:  

 
0( ) = ( ; , ) 1 .F d M t d d     (5) 

 ( ) = .G d a bd  (6) 

From Taylor expansion we obtain 
2( ) ( ) = ( )G d F d O d . 

Hence ( )G d  approximates ( )F d  with 0d   as 
2( )O d  (see Fig. 1). 

In addition ( ) > 0G d . 

Further, for 
1.51.5

>
b

e
a

 we have ( ) < 0lG d  and ( ) > 0rG d . 

This completes the proof of the theorem. 

 
Fig. 1: The functions ( )F d  and ( )G d  for = 0.1 , = 2.1 . 

 

The model (1) for = 0.2 , =1.1 , 
0 = 0.26302t  is visualized on Fig. 2. 

The model (1) for = 0.1 , = 2.1 , 
0 = 0.0788053t  is visualized on Fig. 3. 

The model (1) for = 0.08 , = 2.9 , 
0 = 0.0516678t  is visualized on Fig. 4. 

 

Fig. 2:  The model (1) with = 0.2 , =1.1 , 
0 = 0.26302t ; H–distance = 0.275813d . 

 

Fig. 3:  The model (1) with = 0.1 , = 2.1 , 
0 = 0.0788053t ; H–distance = 0.130729d ; = 0.0437909ld ; 

= 0.136992rd . 
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Fig. 4:  The model (1) with = 0.08 , = 2.9 , 
0 = 0.0516678t ; H–distance = 0.0888784d ; 

= 0.0261803ld ; = 0.0953682rd . 

 

REMARKS 

 

The estimation of remaining errors in the software is the deciding factor for the release of the software or the amount of 

more testing which is required software growth reliability models are using for the correct estimation of the remaining 

errors. 

 

NUMERICAL EXAMPLE 

 

We examine the following data. (The data were reported by Musa [21] and represent the failures observed during 

system testing for 25 hours of CPU time). 

 

TABLE I 

FAILURES IN 1 HOUR (EXECUTION TIME) INTERVALS AND CUMULATIVE FAILURES [21], [20] 

Hour 
Number 

of failures 

Cumulative 

failures 

1 27 27 

2 16 43 

3 11 54 

4 10 64 

5 11 75 

6 7 82 

7 2 84 

8 5 89 

9 3 92 

10 1 93 

11 4 97 

12 7 104 

13 2 106 

14 5 111 

15 5 116 

16 6 122 

17 0 122 

18 5 127 

19 1 128 

20 1 129 

21 2 131 

22 1 132 

23 2 134 

24 1 135 

25 1 136 
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Fig. 5: Approximate solution. 

 

The fitted model (1) based on the data of Table 1 for the estimated parameters:  

 =136; = 3.1446927524; =1.1268337951    

is plotted on Fig. 5. 
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